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Abstract In order to design nanotori for nanomechanical systems, perhaps involving
oscillating components, precise physical parameters for the nanotori are necessary.
Toroidal shaped molecules of carbon have been investigated previously by the present
authors as constructed by connecting elbow sections formed from joining armchair
and zigzag nanotubes through a pentagonal–heptagonal pair defect. In this paper, we
extend this design by constructing the elbow structures from three distinct carbon
nanotubes. Since for a toroidal molecule, there is a constraint on the bend angles in
the elbow sections to add up to 360◦, particular elbow types which can accommo-
date this requirement are (5,0)–(4,4)–(7,0) and (3,3)–(6,0)–(4,4). We adopt a least
squares approach for the bond length to minimise the variation from the ideal carbon–
carbon bond length, which is taken to be σ = 1.42 Å. Moreover, formulae for the mean
generating radius of the nanotori and the mean radius of the nanotubes are obtained
from certain integral expressions. This purely geometrical approach can be formally
directly related to certain numerical energy minimisation methods used by a number
of authors.

Keywords Carbon nanotori · Least squares method · Elliptic integrals

1 Introduction

Dunlap [1] first proposed the torus as a stable form of graphitic carbon. He constructs
toroidal molecules by joining two different carbon nanotubes with matching radii
and introduces the pentagon–heptagon pair [1–3]. Moreover, Dunlap [1–3] predicts
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that the molecule in all comprises 12 connecting sections occurring for the 360◦ turn
and therefore, the tubule bend angle is 30◦ for each section. The energetic stability
of molecules that are constructed based on the C60 fullerene and carbon nanotube
structures are investigated by Itoh et al. [4], Ihara et al. [5] and Itoh and Ihara [6].
They find that these structures are more thermodynamically stable [5,7] and such
toroidal shapes are expected to be physically more interesting than those of the two
original structures [6]. Although, these theoretically proposed structures have not been
confirmed by experiment [8], they are believed to give rise to fascinating electrical,
magnetic and elastic properties arising from the pattern of the hexagonal rings [7].

In a recent paper Cox and Hill [9] show that certain toroidal molecules may be
constructed from two types of carbon nanotubes, such that the bend angle and the two
nanotubes lengths are determined by minimisation of the total squared deviations of
the inter-atomic spacings from the ideal spacing σ = 1.42 Å. This procedure generates
certain toroidal shaped molecules previously known to exist, along with numerous
other toroidal molecular structures. The question arises as to the generality of the
procedure, and whether or not we might determine other toroidal shaped molecules,
such as ones constructed from three distinct nanotubes.

The major contribution of this paper is to examine the geometry of the basic repea-
table units, comprising three distinct carbon nanotubes, which are needed to assemble
the toroidal molecule. Subsequently and following [9], we join these repeating units
according to the least squares minimisation of the deviations of the inter-atomic spa-
cing from the ideal spacing σ = 1.42 Å. We comment that the least squares method
can be related to the computer simulations for minimisation of the bonded interaction
energy of covalent systems [10–13]. These authors assume that there are three main
contributions to this bonded interatomic energy which arise from bond stretching,
bond bend and bond torsion and which can be written as

E = 1

2
kr (r − r0)

2 + 1

2
kθ (θ − θ0)

2 + 1

2
kτ (1 − cos(nφ − φ0)),

where kr , kθ and kτ are certain bond stretching, bend angle and torsional constants,
respectively, r0, θ0 and φ0 are the equilibrium values of the bond length, bond angle
and ideal phase for this bond type, respectively, and n is an integer. In terms of the force
constants, kr has the largest value [10–13] indicating that the bond stretching might be
the dominant physical requirement for the bonded potential energy. Consequently, the
purely geometrical approach adopted here corresponds to an energy approach where
only the bond stretching energy is being taken into account.

We comment that in this paper, all the carbon nanotube sections are assumed to be
either zigzag or armchair. This is because from previous studies only these two types of
nanotubes are thought to form nanotori [1–3,14]. In addition, there is no experimental
evidence to indicate that chiral tubes can be formed into toroidal structures [8]. The
model formation for the elbow comprising three distinct carbon nanotubes is presented
in the following section. In Sect. 3, the toroidal molecule constructed by connecting
n sections of elbows is determined, and formulae for a mean radius of such tori and
a mean radius of the tube are also given. The results and discussion are presented in
Sect. 4. Finally, a summary is made in Sect. 5.
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2 Model formation for elbow

In the present paper, we investigate the elbow structure required for toroidal molecules
by joining three distinct carbon nanotubes of lengths 2�1, 2�2 and 2�3, and utilizing
the least squares bond length method as proposed by Cox and Hill [9]. We note again
that only zigzag and armchair carbon nanotubes are examined. The proposed model
assumes that the basic repeating unit comprises tubes A and C as half unit lengths
and tube B as one unit length. Further, it is assumed that the origin O of a rectangular
Cartesian coordinate system (x , y, z) is located at the central point of tube B, such that
the axis of tube B is aligned along the z-axis, as illustrated in Fig. 1.

We start by defining the i th terminal atom at a join location by position vectors
ai = (aix , aiy, aiz), bi = (bix , biy, biz) and ci = (cix , ciy, ciz) for tubes A, B and C,
respectively. At the junction of tubes A and B with x ′-axis as shown in Fig. 2a, we
perform a translation of the tube B in the negative z-direction by a length �2A, where we
note that 2�2 = �2A+�2B and �2B is as defined later in the text. Tube A is also translated
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Fig. 1 Basic double elbow unit formed from three nanotube sections
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Fig. 2 Rectangular Cartesian coordinate system for two single nanotube elbows (a) for tubes A and B and
(b) for tubes B and C

in the positive z-direction by a length �1 and rotated by an angle φ1 about the y′-axis.
Therefore, the Euclidean distance between the atoms at the junction is given by

|ai − bi | = {[aix cosφ1 + (aiz + �1) sin φ1 − bix ]2 + (aiy − biy)
2

[(aiz + �1) cosφ1 − aix sin φ1 − (biz − �2A)]2}1/2.

Similarly, at the junction of tubes B and C with x ′′-axis as shown in Fig. 2b, tube B
is translated in the positive z-direction by a length �2B , tube C is translated in the
negative z-direction by a length �3 and rotated by an angle φ2 about the y′′-axis. The
distance between the atoms at the join location is then given by

|ci − bi | = {[cix cosφ2 + (ciz − �3) sin φ2 − bix ]2 + (ciy − biy)
2

[(ciz − �3) cosφ2 − cix sin φ2 − (biz + �2B)]2}1/2.

Given these distances between matching atoms, the procedure is to determine �1, �2,
�3, φ1 and φ2 by minimising the least squares variation of these distances from the
ideal carbon–carbon bond length which we take to be σ = 1.42 Å. Consequently, we
are seeking to minimise the following objective functions,

f (�1, �2A, φ1) =
∑

i

(|ai − bi | − σ)2,

g(�2B, �3, φ2) =
∑

j

(|c j − b j | − σ)2.
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Fig. 3 Elbows formed from three distinct nanotube sections

Given that the parameters �1, �2, �3, φ1 and φ2 are determined, then the basic repeating
unconstrained elbow unit can be obtained and is illustrated in Fig. 3. However, in
the case of a nanotorus, we require that an even number of elbow sections forms
a symmetrical torus, so that the angles φ1 and φ2 must be constrained to the value
φ1 +φ2 = 180◦/n where n ∈ {2, 3, 4, . . .}. So in this case, we minimise the objective
function

F(�1, �2A, �2B, �3, φ1) = f (�1, �2A, φ1)+ g(�2B, �3, 180◦/n − φ1).

In consequence, with this additional constraint, slightly different values for �1, �2 and
�3 might be obtained. The resulting nanotorus structure is achieved by translating the
elbow in the x-direction by a distance r2 which is obtained by the procedure which is
given in the following section.

3 Model formation for toroidal molecule

Nanotoroidal structures formed from the elbows determined in Sect. 2 are investigated
here. We desire to construct and determine a mean radius of the toroidal shapes by
connecting the basic elbow units with φ1 and φ2 constrained for the 360◦ turn. Firstly,
we consider the upper quadrilateral, as shown in Fig. 4, which comprises four sides,
namely r1, �1, �2A and r2, and the configuration also depend on the angle φ1. On using
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Fig. 4 Elbow skeleton formed from three distinct nanotube sections

the compound angle formula for sine, we may deduce

sin φ1 = sin θ1 cos θ2A + sin θ2A cos θ1 = (�1r2 + �2Ar1)/R2
1,

and therefore,

r1 = (R2
1 sin φ1 − �1r2)/�2A. (1)

Similarly, from the compound angle formula for cosine, we have

cosφ1 = cos θ1 cos θ2A − sin θ1 sin θ2A = (r1r2 − �1�2A)/R2
1,

and therefore we may deduce

r1 = (R2
1 cosφ1 + �1�2A)/r2. (2)

By equating Eqs. 1 and 2, we can rearrange and substitute for r2 which can be written
as

r2 R2
1 sin φ1 = �2A R2

1 cosφ1 + �1(r
2
2 + �2

2A),

where we note that R2
1 = r2

2 + �2
2A is strictly positive. By dividing by R2

1 and rearran-
ging, we obtain

r2 = �2A cot φ1 + �1 cscφ1, (3)
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and likewise

r1 = �1 cot φ1 + �2A cscφ1.

By precisely the same process for the quadrilateral comprising the sides r2, �2B , �3
and r3, we may deduce

r2 = �2B cot φ2 + �3 cscφ2,

r3 = �3 cot φ2 + �2B cscφ2. (4)

The parameters �2A and �2B can be rearranged from (3) and (4), respectively, which
can be written as

�2A = r2 − �1 cscφ1

cot φ1
= r2 tan φ1 − �1 secφ1,

�2B = r2 − �3 cscφ2

cot φ2
= r2 tan φ2 − �3 secφ2.

Since 2�2 = �2A + �2B , therefore we obtain

r2 = �1 secφ1 + 2�2 + �3 secφ2

tan φ1 + tan φ2
. (5)

By substituting (5) into the above equations, r1 and r3 can be obtained

r1 = �1 cot(φ1 + φ2)+ 2�2 csc(φ1 + φ2) cosφ2 + �3 csc(φ1 + φ2), (6)

r3 = �1 csc(φ1 + φ2)+ 2�2 csc(φ1 + φ2) cosφ1 + �3 cot(φ1 + φ2). (7)

We comment that these two formulae provide the appropriate generalisation of those
given in Cox and Hill [9] for the case of two distinct tubes. The corresponding equations
given in Cox and Hill [9] can be formally obtained from (6) and (7) with the formal
identification �2 ≡ φ2 ≡ 0.

Next we attempt to calculate a mean radius a and a mean generating radius c in
terms of the perpendicular distances r1, r2 and r3. We utilize the integral formula for
a mean radius r̄ for a circle which is given by

r̄φ0 =
∫ φ0

0
r(φ) dφ.

For a right-angled triangle which consists of r1, �1 and R1 sides, we have φ0 =
tan−1(�1/r1) and r(φ) = r1 secφ and we may deduce

r̄1θ1 = r1

∫ tan−1(�1/r1)

0
secφ dφ = r1 ln

⎛

⎝�1

r1
+

√
�2

1 + r2
1

r1

⎞

⎠ .
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Since sinh−1 x = ln(x + √
x2 + 1), we therefore obtain

r̄1θ1 = r1 sinh−1(�1/r1).

We can repeat the same procedure to obtain the mean radii for r2 and r3 and finally
by averaging, we obtain the mean toroid generating radius c to be given by

c = {r1 sinh−1(�1/r1)+ r2[sinh−1(�2A/r2)+ sinh−1(�2B/r2)]
+ r3 sinh−1(�3/r3)}/(φ1 + φ2). (8)

We now extend this process to determine a representative expression for the mean
tube radius a. Here a surface integral for a torus is undertaken to determine such
an average radius. The surface element for the tube is obtained by transforming the
toroidal coordinate system (a, φ, ψ) into a Cartesian coordinate system given by

x = (c + a cosψ) cosφ, y = (c + a cosψ) sin φ, z = a sinψ,

where c and a denote the mean radii for the torus and the tube, respectively, and φ and
ψ are the torus and the tube angles, respectively (see Fig. 5). By using the Jacobian
matrix, the surface element integral for the torus can then be written as

∫ φ0

0

∫ 2π

0
b(φ,ψ)[r(φ)+ b(φ,ψ) cosψ] dψdφ = 2π b̄φ0c,

where b(φ, ψ) is the radius of the tube and as before r(φ) is the torus generating
radius. For the section of tube A, θ1 = tan−1(�1/r1), r(φ) = r1 secφ and b(φ,ψ) =
a1

√
sec2 φ cos2 ψ + sin2 ψ , we may deduce

ā1 = 1

2πcθ1

∫ θ1

0

∫ 2π

0
a1r1 secφ

√
sec2 φ cos2 ψ + sin2 ψ dψdφ,

= a1r1

2πcθ1

∫ θ1

0

∫ 2π

0

√
1 − sin2 φ sin2 ψ

cos2 φ
dψdφ.
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Fig. 5 Toroidal coordinate system (a, φ, ψ)
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Upon the substitution of k = sin φ, the above integral can be written as

ā1 = 2a1r1

πcθ1

∫ π/2

0

∫ �1/R1

0

√
1 − k2 sin2 ψ

k′3 dkdψ = 2a1r1

πcθ1

∫ �1/R1

0

E(k)

k′3 dk,

where E(k) is the complete elliptic integral of the second kind with modulus k and
k′ = √

1 − k2 is the complementary modulus. Using these definitions with equivalent
expressions for tubes B and C and then combining, we may derive the following
formula for the representative tube radius

a = 2

πc(φ1 + φ2)
{a1r1h(�1/R1)+ a2r2[h(�2A/R1)

+h(�2B/R2)] + a3r3h(�3/R2)}, (9)

where

h(x) =
∫ x

0

E(k)

k′3 dk. (10)

The analytical expression in terms of an infinite series for (10) can be found in
Appendix A of Cox and Hill [9] which is given by

h(x) = 3πx

8r
+ π

8
sin−1 x + π

2

∞∑

m=1

( − 1
2

m + 1

)2{
(2m − 1)!!

2mm! sin−1 x

− x2m+1

(2m + 1)r

[
1 +

(
r2

x2

) m−1∑

k=0

(m − k − 1)!(2m + 1)!!
2k+1m!(2m − 2k − 1)!!

(
1

x

)2k]}
,

where r = (1 − x2)1/2 and the double factorial (2n − 1)!! denotes (2n − 1)
(2n − 3) . . . 5 · 3. We comment that the above procedures for the determination of
the average parameters a and c are by no means unique, but appear as the most natural
and simplest for the determination of representative values.

4 Results and discussion

In this section, we begin by considering elbows made from the smallest possible
nanotube sections. By precisely the same procedure as that given in [9], the basic
parameter for elbows are given in Table 1. The smallest possible nanotube sections
which can be formed from the elbows are referred as the base unit, and other possible
structures can be obtained by adding further incremental units. We also follow the
same nomenclature formulated in [9] for toroidal shaped molecules by utilizing the
notation N (n,m)p where (n,m) refers to a section of nanotube which is constructed
from p atoms and N is a number of base units.

Numerical results from the least squares procedure when applied to various distinct
nanotube elbows are presented here. We consider two different elbow structures which
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are (5,0)–(4,4)–(7,0) and (3,3)–(6,0)–(4,4). Using the new polyhedral facetted model
for carbon nanotubes which incorporates curvature [15] and employing the value of
the bond length σ = 1.42 Å, the tube radii are obtained. Once the atom positions are
determined, the physical parameters �1, �2, �3, φ1 and φ2 can be obtained by the
minimisation process, both for no constraints and again with the constraint φ1 +φ2 =
180◦/n where n ∈ {2, 3, 4, . . .}. In Table 2, we present the results for the unconstrained
case and the constrainted case when φ1 + φ2 = 60◦ where n = 3 for two different
nanotori. We comment that the sum of the angles φ1 and φ2 needs to be exactly
or close to a common factor of 360◦ for toroidal structures, and there is only one
case arising for these particular two structures. Moreover, there is no straightforward
procedure to choose the elbow structures for which φ1 + φ2 � 180◦/n, so that only
(5,0)–(4,4)–(7,0) and (3,3)–(6,0)–(4,4) are presented here.

Using the parameters for the constrained elbows, we calculate the toroidal parame-
ters r1, r2 and r3 from Eqs. 6, 5 and 7, and finally, values for the mean torus generating
radius c and mean tube radius a are derived from the expressions (8) and (9). These
results are presented in Table 3. Two of these nanotori are illustrated graphically in
Figs. 6 and 7. In Fig. 6, we depict the toroidal structure of 3(5, 0)176(4, 4)483(7, 0)19

Table 1 Fundamental parameters for nanotube elbows

Nanotube Radius (Å) Base unit Incremental unit

Number atoms Number atoms Length (Å)

(5,0) 2.0551 17 +20 +4.7986
(4,4) 2.7582 48 +16 +2.4380
(7,0) 2.8094 19 +28 +4.2230
(3,3) 2.0965 12 +12 +2.4206
(6,0) 2.4298 32 +24 +4.1580
(4,4) 2.7582 24 +16 +2.4380

Table 2 Bend angles and base
unit section

Elbow type

(5,0)–(4,4)–(7,0) (3,3)–(6,0)–(4,4)

φ1 + φ2 unconstrained
φ1(

◦) 25.59 31.38
φ2(

◦) 36.00 33.80
�1 (Å) 3.7089 3.2202
�2 (Å) 3.6571 2.4085
�3 (Å) 3.1727 2.3430

φ1 + φ2 = 60◦
φ1(

◦) 24.00 26.20
φ2(

◦) 36.00 33.80
�1 (Å) 3.3396 3.2716
�2 (Å) 3.6571 2.4085
�3 (Å) 3.1727 2.3430
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Table 3 Physical parameters of toroidal structures

Toroidal structures r1 (Å) r2 (Å) r3 (Å) c (Å) a (Å)

3(5, 0)176(4, 4)483(7, 0)19 12.4239 12.7083 13.4038 12.9935 2.6209
3(3, 3)126(6, 0)323(4, 4)24 9.2163 9.7138 10.1213 9.7980 2.4780

Fig. 6 Nanotorus formed from 3(5, 0)176(4, 4)483(7, 0)19 where φ1 + φ2 = 60◦

which can also be referred to as a C396 molecule and also in Fig. 7, we show the
toroidal structure of 3(3, 3)126(6, 0)323(4, 4)24 which can also be referred to as a
C300 molecule.

5 Summary

The main contribution of this paper is applying a least squares approach to deter-
mine the basic elbow unit and toroidal structures formed from three distinct carbon
nanotubes. Within each constituent nanotube structure, the relative atom positions
are assumed to remain unchanged. The connection for adjacent atoms on each of the
two sections is assumed to be as close as possible to the carbon–carbon bond length,
which we take to be σ = 1.42 Å. We seek to minimise the variation in the bond length
which gives rise to the physical parameters, namely the bend angles, φ1 and φ2, and
the half-lengths �1, �2 and �3. There are two approaches in the minimisation routines,
which are the unconstrained and constrained cases for the bend angles. In terms of
the unconstrained procedure, all the physical parameters are allowed to attain their
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Fig. 7 Nanotorus formed from 3(3, 3)126(6, 0)323(4, 4)24 where φ1 + φ2 = 60◦

optimum values themselves which are necessary to form the elbow structures. Howe-
ver, in such a procedure, there is no guarantee that the elbow sections can be joined to
each other and form a toroidal shaped structure with a 360◦ turn. Therefore, the ana-
lysis is repeated with the angles φ1 and φ2 constrained to the value φ1 +φ2 = 180◦/n
where n ∈ {2, 3, 4, . . .}.

Here, we only consider two distinct elbows which are (5,0)–(4,4)–(7,0) and (3,3)–
(6,0)–(4,4) and all the physical parameters are given in Table 2. Since the principal
aim of the paper is to construct toroidal molecules by joining elbow sections, the
bend angles must form a 360◦ turn. Therefore, we necessarily exploit those elbow
sections for which the sum of their bend angles is a factor of 360. We might say that
the two elbows which are studied here correspond to cases for which 360/(φ1 + φ2)

approximately is an integer.
Following the analysis of two elbow types, we then consider toroidal shaped

molecules. We establish a straightforward procedure to determine the mean gene-
rating toroidal radius c and the mean tube radius a. Once the bend angles and tube
lengths are obtained, the perpendicular lengths from the torus centre can be deter-
mined as given in Table 3. We comment that such theoretical structures have yet to
be confirmed either experimentally or by molecular dynamics simulations. However,
their theoretical existence is a first step in understanding the complex geometrical
structures of such molecules.
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